哪些飯碗 AI 不好搶?
之前ChatGPT發(fā)布后,就曾有傳言稱“AI即將取代人類”;而隨著Sora、Suno的發(fā)布,相信這種說法的人越來越多——畢竟文生文還只是影響到作者、自媒體這些的工作,文生視頻和文生音樂,連創(chuàng)意類的作曲、剪輯都能做,波及的范圍越來越廣。這種情況下,疊加經(jīng)濟增長放緩,擔(dān)心自己飯碗的人也越來越多。
但其實沒必要擔(dān)心,當前的AI大模型,哪怕繼續(xù)優(yōu)化升級到極致,仍然無法取代人類專家——因為這對AI而言超出了能力范疇——它沒有情感,沒有個體意識,也就無法“涌現(xiàn)”最關(guān)鍵的人類「價值判斷」的能力。
周末跟一位體制內(nèi)的老友聚,無意中聊到AI,我看友人的表情,疑似是用《三體》中的“冬眠艙”沉睡了十年。
我再次體驗到“信息繭房”的威力。
困于繭房的不止友人,還有我。
我太想當然了,以為所有人對社會科技趨勢,“至少有個大概的共識”吧。
事實上,這個“共識”遠低于我的預(yù)期。
2022年底,OpenAI發(fā)布ChatGPT,因其在文本領(lǐng)域的“里程碑式突破”,引爆了一波人工智能浪潮,持續(xù)至今仍不見衰。
時隔一年多,它究竟發(fā)展到什么程度,能做些什么,對我們有哪些深遠影響?
對此完全沒概念的人竟比預(yù)想的多。
這篇專題,簡單聊下。
一、與早先的“AI”有什么實質(zhì)區(qū)別?
早先的AI,可以歸為兩類:
一類是專注特定領(lǐng)域的“單一智能”。
比如,“深藍”(Deep Blue),1997年國際象棋比塞中擊敗了冠軍。
但這種只能做特定規(guī)則范圍內(nèi)的智能,只能稱為“某某自優(yōu)化程序”,跟當下火熱的AI不在一個賽道。
另一類是直接與人類語言或行為互動的“AI”,背后其實是搜索引擎或推薦算法。
AI大模型跟這類“傳統(tǒng)AI”的實質(zhì)區(qū)別是什么?
用了一段時間,我感觸最深的是,當下的AI,它真的是圍繞“你的需求”去互動、去組織內(nèi)容,而之前的只是圍繞“關(guān)鍵字”(或行為)去搜羅內(nèi)容。
比如,我曾在哪看過“大海中與龍門有關(guān)”的禪機,想找它的出處,但我不知道這部作品名,甚至連它是不是一本書也不確定。
于是用搜索引擎,不出所料,搜到的要么是“鯉魚躍龍門”,要么是兒童故事或音樂,總之跟我的目標風(fēng)牛馬不相及。
后來換成AI大模型,同樣的描述,它告訴我:出自禪宗名著《碧巖錄》第六十回。
嗯,言簡意賅,一步到位。
這就是當下AI的突破性之處:
它能“理解”人類語言,于是能根據(jù)“你話的意圖”而不是“你話里的關(guān)鍵詞”去搜羅內(nèi)容。
這更符合現(xiàn)實情境——我最需要搜索的時候,總是出現(xiàn)在“我連搜索目標都還模糊不清”的時候。
當我都知道目標的“關(guān)鍵字”時,我還要你搜索引擎干嘛?欣賞競價廣告么?
同樣的問題也出現(xiàn)在各類“智能推薦”上,我高頻瀏覽某商品,它就老出現(xiàn)在“你或許喜歡”列表上。
這契合現(xiàn)實嘛?
現(xiàn)實中,一個人反復(fù)高頻搜某一類商品又叉掉,有沒有可能他其實不需要這個,但需要的又找不到?
諸如此類,這些統(tǒng)統(tǒng)可以歸為“模糊需求”——是現(xiàn)實中更高頻出現(xiàn),也更“剛需”的需求。
但早先的AI對此無能為力。
這是AI大模型“革命式突破”的地方:
它理解人類語言,就能洞察你的意圖,所以我說它能圍繞你的需求去搜索或組織內(nèi)容,這是它與早先的AI(圍繞關(guān)鍵字)最大的區(qū)別。
二、理解人類語言,意味著能輸出實用交付物
可別小看「理解人類語言」。
沒錯,站在人類立場,幼兒園小朋友就能做到。
但機器的優(yōu)勢是背后近乎無窮的算法算力,「理解人類」可說是它額頭上的那個「指數(shù)」。
打個類比,AI的綜合能力是以「算力」為底數(shù),以「理解人類」為指數(shù)。
不理解人類前,這個指數(shù)是個1,它只能做些最呆板最機械的活。理解之后,這個指數(shù)可以是10,可以是100,可以是N。
一個億的一次方不嚇人,但一個億的N次方,光是數(shù)字就能把人淹死。
建立在「理解人類語言」的基礎(chǔ)上,它就能代入人類視角去「學(xué)習(xí)更復(fù)雜的概念」。
起初你嘲笑它的認知,就像是剛發(fā)明出來的火車,比馬跑得還慢,但調(diào)適訓(xùn)練幾次,它就能以千萬匹馬都無法拉動的力量奔跑,甚至能飛上天,后勁無窮。
這就是硅基智能的優(yōu)勢,它可以無止境的「吃」,無止境的「內(nèi)化」,而且不需要休息!
這正是當前AI的“初步成果”,它已經(jīng)能輸出人類「所需要」的各類文本,包括且不限于:
創(chuàng)作公文、小說、詩歌等純文字內(nèi)容;
陪你聊天解悶,甚至談戀愛;
輸出繪畫、樂曲、帶劇情的視頻;
甚至網(wǎng)站代碼、表格、簡歷、PPT等直接作為職場交付物的內(nèi)容了。
……
網(wǎng)絡(luò)上的例子眾多,這里不贅述。
當然,我們更關(guān)心的不是它能做這些——我畫個火柴人那也是藝術(shù)呀。
我們關(guān)心的,是它到底能做到幾成色?
有多可靠?
肉眼可見的未來會頂替職業(yè)工作者么?
三、AI達到平替職場人的水平了么?
一段時間評測下來,我體驗最深的是,當下的AI,最大的優(yōu)點跟缺點都是,“AI痕跡”明顯。
我說的“AI痕跡”不是貶義,比如,讓它出一些建議或分析報告,無論任何領(lǐng)域,它幾乎能交出一份「全面」、「均衡」、「精要」的答卷。
但硬傷也恰恰在于此。
我們解決現(xiàn)實業(yè)務(wù)問題時,最忌諱的恰恰是「均衡」與「全面」。
就像高考滿分作文,它也就只能在考卷里滿分,按現(xiàn)實職場要求,高考優(yōu)秀作文實在是過于“學(xué)生氣”。
現(xiàn)實工作,無論哪類業(yè)務(wù),最耗腦也最體現(xiàn)能力的實質(zhì)都是“資源配置”的問題——一個項目,你手頭資源(精力)有哪些,按什么步驟、什么組合、多少比例分配。
比如,讓你設(shè)計一份讓人念念不忘的宣傳材料。有經(jīng)驗的人都知道,打動人心的關(guān)鍵,一定是要突出某些,壓抑某些——即一定要“不均衡”展示。
“不均衡”雖然未必就合理,但「全面」、「均衡」卻一定是錯的。
所以,在工作中,核心競爭力的體現(xiàn)是在“配置”上,這是專家最需要“動腦子”的地方,也是他們“值錢”所在——不是去指導(dǎo)什么該做,而是把一切不該做的事剔除掉。
而AI的優(yōu)勢在哪里?
在于專家們將資源配置完之后,根據(jù)他們的要求,填充細節(jié),作為算法與算力——實際上,這些工作原本恰恰是絕大多數(shù)初級XX師,XX助理干的活——是不是想到AI威脅最大的群體是誰了?
當然,有人會說,只要數(shù)據(jù)訓(xùn)練的量級足夠,專家資源配置的活,AI也能勝任吧?
不是這樣的。
我得出上述結(jié)論,并非建立在AI當前的能力之上,我是把它們未來的成長性也考慮在內(nèi)。
我關(guān)注的是它們底層的“原生缺失”,這些“缺失”必將導(dǎo)致它們能力的缺陷。
AI缺失的是什么?
它無法擁有人類情感,沒有個體意識,沒有欲望、動機。
咦,這是不是跟前面說的「理解人類語言」矛盾?
并非如此。
理解可以通過純粹的邏輯實現(xiàn),AI會這么告訴你:
我沒有情感,但我填喂過“人類所有的情感狀況”后,我就能知道,一個人在某種情境下,他是會喜怒哀樂還是會無感麻木。
這是「理解」。
但理解與體驗是不同維度的事。
你想象下,剝奪一個人的一切感官體驗(包括恐懼),你覺得他還會有任何欲望、利益、動機么?
他就變成了它了——一個僅剩理性思維的機器。
沒有情感體驗,AI就無法獨立做價值判斷——它的一切目標都得“預(yù)先導(dǎo)入”——但真實世界中,沒有人能預(yù)判最優(yōu)解。
別說一個社會或特定人群,哪怕是一個人,就你最懂的「自己」,你能確定明天晚餐你就一定想吃現(xiàn)在最想吃的料理么?
很多人一定還記得那個事例吧:
某系統(tǒng)出問題了,需要技術(shù)人員進大廈修理,但這個系統(tǒng)就是負責(zé)分配入門資格的,技術(shù)人員進不去,而門衛(wèi)因為技術(shù)人員沒有入門資格,就是攔住不讓進。
這位門衛(wèi),更像AI——無法根據(jù)當前情境做正常人都會做的“常識判斷”。
當然,AI比門衛(wèi)謙遜的多,它很明確知道自己「不能做什么」。
在這類問題上,AI本I大方承認:
它反復(fù)強調(diào)“自己是基于歷史數(shù)據(jù)和模式”,對于未知或?qū)嵸|(zhì)創(chuàng)新——恕我無能。
AI無法做價值判斷,就無法在當前情境中權(quán)衡輕重緩急,我剛才提到專家最核心的事情了吧——配置資源。
沒錯,AI能通過訓(xùn)練獲得歷史最優(yōu)配置,但歷史配置能否匹配當前情境或未知領(lǐng)域——這需要價值判斷,需要人。
* 例子太多,比如,只要牽涉到倫理沖突或長遠利益(必存在倫理沖突),AI就沒轍了。
因此,只有人類專家才能做出這個判斷——AI心里沒底。
除了情感與意識問題,還有哪些是AI特別不擅長的?
跨領(lǐng)域聯(lián)想。
只要是表面不相關(guān)的兩個領(lǐng)域,它就很難充分挖掘兩個領(lǐng)域間的內(nèi)在關(guān)聯(lián),從而獲得「智慧洞察」。
比如,上周我在思考校園霸凌的問題。
分析多了,我發(fā)現(xiàn),只將眼光放在教育體系內(nèi),得不到最優(yōu)解。
我就這類問題跟AI探討,它能得出的也就那些全面、均衡的建議,再無突破。
實際上,我很快直覺到——拋開校園與教育的范疇,將眼光看向職場,看向成年人社會,從那些表象不是霸凌的成人互動中,找到突破問題的關(guān)鍵。
但無論我怎么暗示AI,它始終不會這么思考。
「少加點班」之所以能始終得到老讀者錯愛,顯然不是因為我的文筆,最大的原因恰恰是專題中偶爾捕抓到的「深刻洞察」,而這些洞察絕大多數(shù)正是來自于「跨領(lǐng)域分析」,這是我的個人核心競爭力。
比如,從“控制論”中尋求“意志力改進”的措施;
從水流的特性中獲得“碎片時間整體應(yīng)用”的靈感;
或者從“慢性病的邏輯”中挖掘出“學(xué)習(xí)與持久性記憶”;
……
諸如此類與實質(zhì)創(chuàng)新有關(guān)的飛躍,AI仍只能“隨機關(guān)聯(lián)”——但因為價值判斷缺失,要AI在眾多“隨機成果”實現(xiàn)最優(yōu)解的經(jīng)濟效益實在太低。
與「跨領(lǐng)域聯(lián)想」類似的,還有一個重要的能力是「跳出領(lǐng)域邊界」。
比如,你要研究某國歷史的復(fù)雜問題,那你就必須跳出該國歷史去尋求解答。
誠如歌德所說,不懂外語的人,就連自己的母語也只是懂得一知半解(He who knows no foreign languages knows nothing of his own),也隱含類似意思。
無論是「跨領(lǐng)域聯(lián)想」還是「跳出領(lǐng)域框架」,都是解決復(fù)雜問題——或者說的直白點,有極大潛在經(jīng)濟價值的問題——最依賴的能力。
而這類能力當前AI很難獲得的,因為其中的鴻溝不是“算法或算力”可以彌補,它需要「價值判斷」,需要動機、利益、情感、個體意識的參與——而這正是AI與Human的最實質(zhì)區(qū)別。
以上說的是「硬實力」層面的東西。
如果再考慮到「軟文化」,誠如職場老油子所評價:
工作很多時候是服務(wù)老板/投資人/領(lǐng)導(dǎo)的情緒,是察言觀色與人情世故,這方面,AI就更頭疼了。
所以,當前的AI大模型,哪怕繼續(xù)優(yōu)化升級到極致,仍然無法取代人類專家——因為這對AI而言超出了能力范疇——它沒有情感,沒有個體意識,也就無法“涌現(xiàn)”最關(guān)鍵的人類「價值判斷」的能力。
某種角度看,AI更像一個徹底拋棄了低級趣味、連生命意義都不在乎的「純粹圣人」,它固然可以告訴你一切事實性知識,但卻無法指導(dǎo)一個有血有肉的人如何生活。
四、那AI到底會不會跟人搶飯碗?
首先是體力活的朋友可以直接無視了。
用AI實現(xiàn)精細的手工活,經(jīng)濟效益非常低,在肉眼可見的未來,無需擔(dān)心。
至于“腦力活”,確實是當前AI的主戰(zhàn)場。
從AI的原生缺陷反推,我們不難得出,凡是不涉及情感、不涉及價值判斷的一切工作,像是“遵從指令”、“按部就班”、“邏輯推理”、“分析歸納”、“事實性知識”等等那些容易用“效率”去度量的工作,都是AI潛在的頂替項。
按人類社會的習(xí)慣,經(jīng)濟效益總是主導(dǎo)目標。換句話說,薪酬越高、可自動化程度越高,那么就越可能被率先“優(yōu)化”。
至此,可以總結(jié)如下:
不考慮社會因素,AI將導(dǎo)致基礎(chǔ)崗的坑位急劇減少,同時,將進一步提升高水平人才的產(chǎn)出質(zhì)量。
那這是不是一定會導(dǎo)致高失業(yè)率?
宏觀來看,短期內(nèi)陣痛在所難免,但長期來看,大量冗余的人員必將衍生全新的需求與市場。
這將產(chǎn)生大量全新的工種。
只是無論將來的新業(yè)務(wù)是什么,把AI耍的像今天“電腦打字”般爐火純青,肯定是未來職業(yè)的趨勢了。
五、我們需要怎樣適應(yīng)后AI年代?
前陣子,我經(jīng)??吹礁黝悺敖倘巳绾问褂肁I 的培訓(xùn)”,這些人喜歡強調(diào)一項“能力”——如何向AI提問。
這讓我想到了上世紀的原始部落對于飛機的看法:
這些現(xiàn)存的“原始人”總是先聽到轟隆隆的聲音,然后看到飛機,于是他們得出結(jié)論:模仿轟轟發(fā)聲,遲早就能召喚飛機。
沒錯,讓AI輸出內(nèi)容,得確是通過發(fā)問驅(qū)動,但發(fā)問僅僅是最表象的東西,提出高質(zhì)量問題的關(guān)鍵從來就不在于“發(fā)問技巧”,而在于“你對該業(yè)務(wù)領(lǐng)域的認知深度”。
這類培訓(xùn)大受歡迎,讓人不禁替這些白領(lǐng)們擔(dān)心,AI取代他們可能還真用不了多久。
當然,這不能怪大眾。
由于歷史原因,我們的教育模式在當初定位的時候,就是想著培養(yǎng)“擁有豐富知識”且能創(chuàng)造性解決按部就班聽話的“高級人才”。
誰想這模式下培養(yǎng)的能力,恰巧碰瓷了AI最擅長的領(lǐng)域。
顯然,AI進一步放開普及之后,徹底的教育變革也是勢在必行了。
專欄作家
李少加,公眾號:少加點班,人人都是產(chǎn)品經(jīng)理專欄作家?!哆M化式運營》作者,“基于用戶視角的用戶養(yǎng)成運營框架”提出者,互聯(lián)網(wǎng)商業(yè)獨立研究者、運營管理專家。
本文原創(chuàng)發(fā)布于人人都是產(chǎn)品經(jīng)理。未經(jīng)許可,禁止轉(zhuǎn)載。
題圖來自 Pixabay,基于 CC0 協(xié)議
該文觀點僅代表作者本人,人人都是產(chǎn)品經(jīng)理平臺僅提供信息存儲空間服務(wù)。
- 目前還沒評論,等你發(fā)揮!