拷問支付寶大BOSS:關于賣家數據分析的10個問題
1,作為支付寶數據首席分析師,你怎么看待“數據挖掘”這個詞?
所謂的“數據挖掘”是基于用戶的行為挖掘出有價值的東西,以及這個東西被用到商業環境上。比如非常著名的“啤酒與尿布”的案例,它的背景是在1992年的美國,每周四或者每周五下午5點-7點的時間形成的連鎖銷售。但是這個聯合銷售的方法并不適合任何時間和任何場合,單純地剝離其背景本身,談數據挖掘就是一個很泛的事情。
2,你認為,支付寶的數據和淘寶的數據有什么不一樣?
我不在淘寶工作,所以很難全面地去了解淘寶內的數據。簡單來說,支付寶的數據很廣,它是以結果為導向的,顯示的是買家交易最后一步動作,而淘寶探討的是影響其購買的多項數據,是過程數據,它的數據更深,更細分。
3,作為產品出身的數據分析師,按道理你應該對影響消費者購買以及過程數據更感興趣,為什么會選擇支付寶這種以結果為導向的交易數據分析呢?
支付寶也有其特殊的優勢。從我個人而言,選擇一個公司做數據分析有幾個理由,第一,公司高層對數據的理解和重視程度;第二,公司的數據量足夠大,足夠豐富,能和你本身的研究方向相契合;第三,公司文化與就是個人性格的匹配,這三點支付寶都符合。
4,你個人認為數據能幫助賣家解決什么問題?
其實數據的核心就是將復雜問題簡單化。今天的數據是否成功主要看兩方面:第一是從時間(Righttime)上,數據出現的時間能否在你最需要它的時候出現;第二,從技術層面講,有關數據的技術門檻能不能再降低。如果你能讓你的用戶用2秒時間,只要按一個箭頭就可看到他想看的數據,那么這些數據就更有價值的。
5,作為產品出身的人,你看數據的角度會和單純的數據分析師有什么不一樣么?
從我本身而言,我認為不懂商業的人別談數據。因為做任何數據都應該從問題出發。比如,你在用數據解決問題之前,首先要問自己幾個問題:what is the problem(是什么問題?);who(用戶是誰);why me(為什么是我做?);why now(為什么是現在做?);What scale(用戶層大么?)。這幾個問題,如果都是YES,那么這個產品就一定值得做。
6,如果你是支付寶的CEO,你最關心支付寶的哪些數據?
這就要看你所指的時間性了,比如周度,月度,甚至年度是不一樣的。如果你的問題是指周度(week)敏感的話而我的時間只有十分鐘的話我的答案會是:第一,新/老用戶支付成功率;第二,新增用戶數的周環比及最近峰比較;第三,十大業務量最高的支付場景中那一個超出了我的預期。第四,商戶及用戶上周投訴的分類排行榜。
7,現在很多賣家開口閉口就會必談pv.uv和轉化率,你認為這是賣家最應該關心的數據嗎?
我不是賣家,但是這個問題的答案是:顯然不是。數據是需要背景的,并不是任何類目,任何級別的賣家他關心的都應該是所謂的流量和轉化率等。比如京東前一段時間最關注的是物流是否給力,因此京東的CEO最想要看的就是送達率的情況,而如果老板關注的是新品成功率,又或者是追單率等數據,這些數據都不是空想,而是經過沉淀和契合賣家自身發展背景的。因此,肯定不是所有的賣家在任何階段關心的數據都是一樣。
8,你覺得作為淘寶賣家,應該如何使用數據?
賣家更應該學會關注搜索數據(Buyer demanddata),而不是交易數據,比如作為一個女裝賣家,你輸入“新款”,會發現,其實早在3月11日,就應該是春裝打折的時候,如果你對搜索數據敏感,就更容易發現商機,而不是只盯著所謂的交易數據不放。要注意的是其實百分之九十影響你的數據不一定在站內。
9,如果你是淘寶賣家,你會關注哪些數據?
如果我是賣家,我關心的數據有兩個緯度:第一,新用戶從那個渠道找到我,看了什么? 買了什么。;第二,存量用戶中的留存情況。
10,你覺得,一個公司或者一個賣家,如何合理利用數據來制定KPI呢?
很多公司的KPI大多是以業務目標為導向,很少以用戶為導向。其實更好的KPI導向應該是以用戶為核心。我們常說用戶很重要,但是用戶到底有多重要,那些用戶對你更重要,可以量化嗎?。其實要知道用戶對你的感知只要問一個問題就可以,用戶失去你,他會不會不爽?比如失去了QQ密碼,用戶會慌,沒有了支付寶,對用戶影響大么?從這個角度去分析,自然能找到答案。
VIA:亮亮
- 目前還沒評論,等你發揮!