網絡購物“關聯銷售”三大招
在網絡購物中,關聯銷售是網絡購物提升銷售的一個重要的方式。相比于傳統的線下零售商,網絡銷售的“關聯銷售”方式更多,也更加強大。通常來說,主要有“誘惑”、“引導”、“理解”三種招數。下面就看看盧凱如何解析和試用這三大招數吧。
2012 年出現了這么一個互聯網專用詞:“剁手族”,意指“網購花錢太多,立誓再網購就剁手的人”。先不提剁手是不是真的能夠控制住網購習慣,只看網購可 以讓消費者上癮,正說明網購充分滿足了消費者的需求,消費者對于網購的黏性也非常高。網購讓消費者欲罷不能,除了價格公道、購買方便、選擇眾多以外,我覺 得網絡平臺上“關聯銷售”的天然優勢,也是一個重要原因。
關 聯銷售,簡單說就是引導客戶在購買商品時,一次性地購買多種。我自己前天在某網站購物時,本來只想購買一條長褲,最后的訂單中卻包括了一條長褲、一雙襪 子和一條內褲。這就是商家利用“關聯銷售”的方法,引導客戶購物的結果。相對于傳統零售渠道,網絡銷售平臺在“關聯銷售”這一領域,可以玩的手段要多得 多,也強大得多,這里主要講3種常用招數,歸納為“誘惑”、“引導”、“理解”。
招數1:誘惑——捆綁優惠
捆綁優惠是指,當消費者按照一定的規則,購買兩件及以上商品時才能享受到的優惠政策。
如上圖所示為易迅的“隨心配”模塊,相機詳情頁中,顯示一系列的捆綁優惠,只有在同時購買相機與其套裝中設定的另外一件商品時,才能享受到價格折扣。類似的捆綁優惠在京東、天貓等處也可以見到。
捆綁優惠在線下渠道的使用也很常見,在超市中經??梢钥吹接命S色膠帶捆綁在一起打折銷售的商品組合。但是在網絡平臺上,捆綁優惠能夠做得更好:
更直觀:以上面易迅網的“隨心配”為例,在一個不大的頁面上,兩件商品、折扣力度、最終價格都很明晰地展示了出來。而在線下渠道中,很難有這樣普遍性而直觀的方式,讓客戶了解到促銷的具體內容。
更靈活:仍以“隨心配”為例,可以看到對同一件商品,可以創建多種優惠套餐,消費者可以根據需要選擇購買。這樣的靈活度是線下很難達到的。
更快速:在網絡平臺中,可以很快速地創建出多個捆綁優惠套餐,消費者馬上就能看到。例如:某廠家規定同時購買其生產的手機與藍牙耳機就能夠享受折扣。在網絡平臺上可以在半小時之內完成這一優惠的創建,而在線下,拋開系統設置不說,人員的培訓、促銷展示的制作也往往會耗時數天。
捆綁優惠這一招數,吸引消費者的是“優惠”,而將商品捆綁一起強行推銷了出去。這一招可以歸納為:誘惑。
招數2:引導——相關搭配
搭配針對商品的自然屬性,理解商品之間的相互關系,依據這一相互關系,引導消費者購買更多的商品。
由 于搭配是基于商品之間的自然關系,消費者買單的幾率會高很多。以京東商城的“推薦配件”模塊為例,對于手機類產品,在這一模塊中可以看到京東商城推薦的 貼膜、保護套、電池、藍牙耳機、充電器、數據線、移動電源、車載配件、耳機等其他種類商品。所推薦的其他商品,從商品類型上看,是與手機能夠互相配合使用 的。
相對于線下渠道,網絡平臺上搭配功能的主要優勢在于:
更廣泛:以上面京東商城的“推薦配件”模塊為例,對一款手機,在這個模塊中搭配出了10件其他的商品(如有必要還可以搭配更多),而這一模塊可以應用于幾乎所有商品上。而在線下渠道中,限于物理展示空間,不可能做到如此的廣泛。
搭配這一招數,吸引消費者的是商品之間的自然關系,讓消費者覺得搭配的商品也能用得著。這一招可以歸納為:引導。
引導和搭配這兩招可以綜合使用,效果更好。例如前面舉例的易迅“隨心配”模塊,既有低價的誘惑,又有商品配件關系的引導,消費者自然更加滿意。
引導和搭配這兩招是網絡平臺從線下渠道繼承并強化的。與線下所施展的招數相比,雖然威力更大,但其本質相同。而這第三招“推薦”則是線上平臺所獨有,線下渠道是學也學不來的。
招數3:理解——智能推薦
智能推薦是當前被炒得很熱門的“大數據”的最常見應用形式之一,它對消費者在網絡上的活動數據(包括瀏覽、購買、評價等)進行分析整理,判斷消費者的行為特征,從而“智能”地為消費者推薦商品。
Amazon的智能推薦系統是為大家所熟知的,其首頁上沒有膏藥般的促銷信息,而是會根據每一位訪問者的瀏覽記錄、購買記錄等為每一位消費者“個性化”生成推薦信息。而在商品詳情頁(itemdetailpage)中,也會根據商品的被購買記錄計算出與其相關的商品。
On-lineFM站點也會使用智能推薦算法,向其聽眾推薦歌曲。例如豆瓣電臺,用戶對每一首歌都可以標記“喜歡”、“跳過”,而豆瓣電臺在播放下一首歌時,會基于聽眾之前對每一首歌的操作,推薦聽眾最可能喜歡的歌曲。
智能推薦系統的算法是當前“大數據”方向的研究熱點,粗略分其大類,有兩種:
第一類:基于內容的推薦
這類算法是基于所分析數據的一系列不相關的特征數據或者類似性質,尋找較高屬性相似度的數據。在計算時,需要對原始數據通過特征提取的方法獲得對象內容特征數據,系統基于用戶所操作對象的特征提取用戶的興趣。
最 著名的基于內容的推薦系統由PandoraRadio所使用。PandoraRadio的工作人員會為每一首歌從各個方面打上標簽(作曲、演唱、年代、 曲風等,據稱有上百個標簽),并且用戶的反饋也會對這些標簽的權重有所影響。而PandoraRadio則會依據這些標簽來為用戶推薦歌曲。
目前,這種基于內容的推薦系統使用范圍并不廣,這一系統的主要障礙在于特征提取。以PandoraRadio為例,他們需要成立一個專門的團隊,負責聽每一首歌,并打上標簽。這樣的人力成本投入過高,且擴展性不夠。
第二類:協同過濾
協 同過濾推薦是當前使用較多的技術,其基本思想非常易于理解,我覺得可以總結為“物以類聚,人以群分”,簡單來說就是類似的人喜歡類似的商品,而喜歡相似 商品的人,往往也有著一些共同點。互聯網上用戶的一舉一動,都可能被背后的計算機系統記錄下來,用作協同過濾分析的數據。
以一個比較簡單的例子來說明協同過濾的原理。下表為4個人對于6部電視劇的評價結果??梢钥吹?,沒有任何兩個人的打分結果是一樣的,也沒有一部電視劇的得分結果是相同的。
但是,如果把某一位用戶的評分當作一個多維向量的話,我們就可以得到4個向量,并看作用戶的特征。
Ben=[5,5,3,0,5,5]
Tom=[5,0,4,0,4,4]
John=[0,3,0,5,4,5]
Fred=[5,4,3,3,5,5]
在六維空間里,這4個向量的夾角即代表了用戶的相似度,夾角越小,相似度越高。在例子來源處詳細介紹了利用矩陣的奇異值分解法計算向量相似度的方法,得到的結果如右上圖所示,可見Ben與Fred對電視劇的口味最為相似。
協同評價推薦系統的最大優點在于,計算機不需要真正地“理解”其所推薦的內容,而且是依賴于大量人群的交互數據。在這個信息爆炸、計算機能力充足的時代,協同評價系統得到了非常廣泛的應用。但協同評價同樣有著一定的局限性:
依賴于大量的數據,當數據量較少(新品)時,推薦精度不夠;
當前的推薦系統需要處理數以百萬計的客戶及商品,其計算量非常龐大,對于計算能力及算法的要求非常高;
相對于數以百萬計的商品,大部分消費者的交互數據只會涉及其中不到1%的商品,也就意味著交互數據矩陣極為稀疏(99%以上為空),算法設計困難。
不管是哪種推薦系統,依靠的都是豐富的消費者應用數據,并據此作出滿足消費者潛在隱性需求的推薦??梢哉f,相對于其他的關聯銷售方式,推薦系統能夠從某種程度上“理解”消費者的需求,因而也會受到越來越多的重視。
原文來自:互聯網分析沙龍
- 目前還沒評論,等你發揮!