chatbot系列:話題領域下的推薦及用戶行為
對話式產品中,常常通過機器人推薦話題來引導用戶的行為。進入某個話題,從一個話題過渡到另一個話題,其中如何巧妙地讓用戶跟著機器人的節奏走,最終既能滿足用戶的需求又能達到商品推薦的效果呢?
在對話式產品中,產品功能不像傳統GUI交互是直接呈現在界面上,對話式交互的功能通常隱藏在的話題里,需要通過機器人引導或推薦將功能觸達用戶。
另外,為了避免用戶在對話時,出現不知所措的情況,同時促進話輪轉換、提升對話輪數,推薦和引導也是起著必不可少的作用。
題外話:
有些人可能會好奇“推薦”和“引導”有什么區別?
——在對話式交互中,推薦一般是讓用戶選擇想去的話題或對話路徑,引導則是在某個話題內,讓用戶一步步深入對話。兩者也具有相輔相成的關系,比如:引導話術中包含的推薦選項。
對話設計中的話題是什么
話題在詞典中的意義是:談話的題目,談論的中心。
就像人和人之間的交談一樣,要進行一場持續有效的對話,必定是圍繞某個中心主題展開,而雙方談論的主題就是話題。
一次有效的對話也并非只能圍繞一個話題,如果某個話題已經結束,而一方還想和另一方繼續交流,也會主動開啟其他話題。
對話設計也是同樣的道理,用戶進入對話系統,大部分都是想解決某些問題,獲取某些消息等,也不排除有純閑聊的情況。要想用戶和系統構成多輪對話,用戶的每個意圖目標應當都由話題來承接,否則就會做成一問一答像搜索引擎一樣的對話產品。
一個話題通常對應產品里的一個功能領域,也存在多個話題對應一個領域的情況。多個話題之間會有相互串聯,以形成“條條大路通羅馬”的對話形態。
某個話題下的推薦及用戶行為
用戶進入某個話題,一般是通過用戶主動發問觸發,或者機器人采用主動式對話引導用戶進入。
當進入某個話題后,如果要按照既定路徑深入對話,通常會由機器人發問、用戶回答的模式來讓系統主導對話進程,直到系統收集到所有必須信息,并根據這些信息執行某些行為。
當機器人反問用戶時,會給用戶幾個快捷回復選項。舉個簡單的例子:
Chatbot: “請問您是想要哪種顏色的T恤衫?(提供庫存有的T恤顏色:紅色、黃色、藍色)”
User: “紅色”
Chatbot: “OK,已將紅色T恤衫添加至購物車?!?/p>
該輪對話中,T恤衫的顏色是根據庫存現有顏色預設好的,推薦選項通常比較固定,而且選項還會根據庫存變化動態調整。
當然T恤衫的推薦維度不止顏色一種, 還包括:品牌、版型、材質等。
這類推薦選項通常由答案決定——即有什么樣的答案就給和答案對應的選項內容(這里指T恤衫庫存顏色)。另外,推薦不一定要以選項的形式單獨拎出來,也可以融在反問話術里,如“請問您要紅、黃、藍哪種顏色的T恤衫呢?”這種方式適用于選項數在2-3個以內,且內容不長的推薦。
然而,設計上要考慮的還不止是推薦選項上的這些happy path,也要考慮用戶可能會說些推薦之外的東西。
還是上個例子,比如:用戶說了其他沒有的顏色、說了多種顏色、跳轉其他話題、返回某些任務節點等等。
如果是單純的移動端界面,可以通過場景化輸入解決,即只提供點擊輸入。不過若是純語音設備,就無法預知用戶可能會說些什么。在設計過程中,盡量將用戶可能出現的回答類型遍歷一遍。
雖然回答基本上由話題內容決定,但也可以抽象出一些通用的類型。我總結了以下幾種:
愉悅路徑(happy path):用戶按給定的推薦回答,能夠順利走通主路徑。
其他可達路徑(相關路徑):用戶沒有按給定的推薦回答,但也能走通路徑。
這里出現的情況會比較多,主要分為兩類:“同義”回答和“破壞性”回答。
具體場景具體分析,還是舉上個例子,用戶可能出現的回答有:
a. “同義”回答:
- 在選項前加各種修飾,如“我媽媽喜歡我穿紅色”、“大過年了應該穿紅色”
- 說了兩種顏色
- 說了選項外的顏色
- 說了顏色所在的順序,如“第二個shai兒”
- ……
b.“破壞性”回答:
- 對某些選項進行否定,系統要能辨認和剔除用戶不要的。如“我不喜歡藍色”
- 否定所有選項,“這些顏色我都不喜歡”
- 反問還有其他什么顏色
- 你幫我選一個
- ……
話題內的非可達路徑:
回復的內容仍在話題內,但已經跳出該場景。可能是返回前面的場景節點,比如:“我再看看其他的T恤衫款式”、“黃色,但是我想換個T恤衫款式”;也可能是跳轉其他場景節點,比如:“我還是先買褲子吧”。
對于跳其他節點的對話,在解決完其他節點的任務目標后,需要提醒用戶解決之前遺留的問題。
舉例說明:
Chatbot: “請問您是想要紅、黃、藍,哪種顏色的T恤衫?”
User: “我還是先挑挑褲子吧?!?/p>
Chatbot:“ OK,為您推薦以下幾款熱門的褲裝品牌?!?/p>
……(經過幾輪對話后)
Chatbot: “OK,M碼,黑色Selected休閑褲已為您加入購物車。剛才的T恤衫還要繼續選購嗎?”
User:“好。”
Chatbot: “CK圓領T恤刪,請問要紅、黃、藍哪種顏色?(如果對話設備是帶屏幕的,可以顯示出該款式不同顏色的T恤衫圖片,方便用戶選擇)”
User: “紅色吧,幫我結賬?!?/p>
偏離或跳出話題:
這里指的跳出話題,和跳其他場景節點意義不同。跳其他場景節點仍然是在話題內,比如“買東西”話題之間的節點跳轉。跳出話題指已經不在這個話題內,而是跳轉其他話題。比如從買東西跳轉到問天氣。不過,和跳其他場景節點一樣,當用戶在其他話題下實現目的后,還是要回過頭來反問用戶之前尚未解決的問題。(可以將話題理解為領域、垂類。解決的是不同領域之間的跳轉、銜接問題)
Chatbot:“請問您是想要紅、黃、藍,哪種顏色的T恤衫?”
User: “對了,周末天氣怎么樣?萬一下雨約不了會,衣服就白買了?!?/p>
Chatbot: “周末杭州多云,2至11度。剛才的T恤衫還要繼續選購嗎?”
User: “好?!?/p>
Chatbot: “CK圓領T恤刪,請問要紅、黃、藍哪種顏色?”
User: “紅色吧?!?/p>
長時間未給出答案:
用戶可能因為在思考問題,或處理其他事務,而沒有立即給機器人答復。如果用戶靜默的時間較長,系統可以再次追問用戶。一般追問1次即可,仍無響應則結束會話。
Chatbot: “請問您是想要紅、黃、藍,哪種顏色的T恤衫?”
User: “Umm……我想想……”
(設置一定時長后再次追問)
Chatbot: “親~還在嗎,你是要什么顏色的T恤衫呢?“
結束會話:
結束會話存在兩種情況:主動結束和被動結束。
主動結束即:用戶通過語言或行為主動結束和機器人的對話,包括意圖已經實現后的結束,以及意圖未完成的結束。
被動結束則是:用戶長時間未響應,由系統結束對話。
用一張邏輯結構圖展示上面6種情況:
從一個話題引導至其他話題的推薦,及用戶行為
不同于用戶在遍歷某個話題的途中跳轉其他話題,這部分主要介紹用戶在走完某個話題,完成某個意圖后,系統如何給用戶推薦。還會提到用戶在對話里無任何行為時,系統又該如何推薦。
當用戶實現某個意圖,對用戶而言任務已經完成。如果是在傳統界面,用戶可能會直接退出應用,而對于對話式交互界面,為了提高功能曝光度,或是對上一個話題的補充、優化,我們還會推薦其他相關話題。推薦的話題可能是在同一領域下的不同話題,也可能是跨領域的話題推薦。
推薦的話題要和上個話題具備關聯性,并且滿足以下條件之一:
在某種程度上能幫到用戶,在用戶下次執行該任務時,可以提供極大便利。
Chatbot: “一切準備穩妥,你定的玫瑰即將送出?!?/p>
Chatbot: “對了,要是加入我們會員,下次訂購還可以享受優惠和“極速達”服務,需要我幫您加入會員嗎?”
User: “好的?!?/p>
……(后面是一系列關于“加會員”的對話)
用戶在實現上個意圖后,有可能會涉及到的功能。
如果機器人平臺沒有提供該功能,用戶也會轉而去其他有這一功能的應用。這類推薦可在一定程度上提高用戶效率,避免用戶在應用間跳轉,實現完整任務鏈路。
比如:用戶在選完約會的餐廳后,可能會預約打車服務。
Chatbot: “好的,外婆家今晚6點,兩人,已提交訂餐信息?!?/p>
Chatbot: “要幫您預約專車嗎?”
User: “好的?!?/p>
……(后面是一系列“打車服務”的對話)
根據用戶個性化數據,判斷用戶很有可能會感興趣的話題。
如果用戶在實現某個意圖后,經常執行同一個操作,那么下次可以把后續操作直接推給用戶,或自動幫用戶完成。
以用戶測量血壓的場景為例:
User: “我的血壓測量結果怎么樣?”
Chatbot: “收縮壓132,舒張壓90,心律92次每分鐘。”
Chatbot: “需要將該測量結果發給您的家庭醫生嗎?”
User:“好的?!?/p>
……(系統自動幫用戶發送數據)
多數用戶感興趣的話題或是一些熱門、熱點話題,幫助用戶接收更豐富的信息。
User: “巴黎有哪些熱門景點?”
Chatbot: “埃菲爾鐵塔、盧浮宮、巴黎圣母院、凱旋門等。”
Chatbot:“ 順便說下,盧浮宮近期有幾個展覽值得一看,要具體了解下嗎?”
User: “好的?!?/p>
……(后面是一系列關于展覽的介紹)
從一個話題引導到另一個話題,用戶也會出現以下幾種應答情況:
- 回答的內容屬于推薦話題范圍。根據上面介紹的“話題內引導”場景,用戶可能會走愉悅路徑,也可能走話題內的可達或非可達路徑。
- 主動開啟其他新的話題。用戶不按推薦的話題走,而是知道自己想了解什么。
- 長時間未應答。用戶對于機器人開啟的話題沒做任何回應。處理方式同樣可以再次追問,若仍無應答則關閉對話。再次開啟對話,則默認以系統初始狀態處理。(話題內的引導推薦則需要根據任務路徑的長短,選擇是銜接先前的對話,還是重啟對話。)
- 結束對話。用戶通常對推薦的話題持否定態度,以結束當前對話
當然,并不一定每個話題結束后都要推薦其他話題,過多無意義的推薦反而會造成信息過載。而且還會干擾用戶,無形中給用戶壓力,最終導致用戶對機器人反感。
本文由 @米粒 原創發布于人人都是產品經理,未經許可,禁止轉載。
題圖來自 Unsplash,基于CC0協議。
- 目前還沒評論,等你發揮!