零售業如何用好大數據

0 評論 19021 瀏覽 23 收藏 22 分鐘

一、“大數據”的商業價值

1、對顧客群體細分

“大數據”可以對顧客群體細分,然后對每個群體量體裁衣般的采取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。云存儲的海量數據和“大數據”的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。

2、模擬實境

運用“大數據”模擬實境,發掘新的需求和提高投入的回報率?,F在越來越多的產品中都裝有傳感器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網絡也在產生著海量的數據。

云計算和“大數據”分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以數據化?!按髷祿奔夹g可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變量(比如不同地區不同促銷方案)的情況下何種方案投入回報最高。

3、提高投入回報率

提高“大數據”成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率?!按髷祿蹦芰姷牟块T可以通過云計算、互聯網和內部搜索引擎把”大數據”成果和“大數據”能力比較薄弱的部門分享,幫助他們利用“大數據”創造商業價值。

4、數據存儲空間出租

企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用戶兩大類。主要是通過易于使用的API,用戶可以方便地將各種數據對象放在云端,然后再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩云業務。

5、管理客戶關系

客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失率、提高客戶消費等。 對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈里發布新產品預告、特價銷售通知,完成售前售后服務等。

6、個性化精準推薦

在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟件推薦、IPTV視頻節目推薦等,而通過關聯算法、文本摘要抽取、情感分析等智能分析算法后,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今后盈利可以來自于客戶增值部分的分成。

以日常的“垃圾短信”為例,信息并不都是“垃圾”,因為收到的人并不需要而被視為垃圾。通過用戶行為數據進行分析后,可以給需要的人發送需要的信息,這樣“垃圾短信”就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什么漢堡,去哪個店消費,消費頻次多少,然后精準推送優惠券給用戶。

7、數據搜索

數據搜索是一個并不新鮮的應用,隨著“大數據”時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網絡、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。

運營商掌握的用戶網上行為信息,使得所獲取的數據“具備更全面維度”,更具商業價值。典型應用如中國移動的“盤古搜索”。

二、“大數據”與零售業的結合運用

對于數據的使用,許多實體零售商同樣表示非常重視,他們對企業積累的數據進行了各種預測和分析。然而,對具體的銷售業務來說,往往存在理想與現實的糾結,前不久市場中一家知名的服裝零售企業一方面在宣傳盈利上市的同時,一方面曝出有近10億元的庫存。國內很多零售企業都知道“大數據”應用的好處,但他們一旦將“大數據”的應用結合到自己的企業經營中時,便會出現與目前經營有非常大的不適應問題,如此導致許多企業對此都持非常謹慎的態度。

1、將零售策略與“大數據”技術進行結合

零售企業談的“大數據”的最大價值,是在零售策略上與“大數據”技術進行結合,最大程度地編制前置性的零售策略,確保銷售計劃的實現?!按髷祿敝v究四個“V”:一是數據體量大(Volume);二是數據類型復雜(Variety),多涉及到各種結構性與非結構性的;三是價值密度低(Value),這和體量大是相對應的;四是數據更新與處理速度快(Velocity)。

根據這些特性主動地在業務數據產生的同時做出相應的策略應對,會為企業贏得更多的時間和市場策略調整空間。這類似于大江大河的洪峰預警,上游的洪峰出現什么狀況,下游要做什么樣的應對。數據用到這一層面上,才具有直接的業務價值,這不是那種銷量同期比、環比、銷售計劃比數據能指導業務的價值能相比的。例如一家涉足線上業務的實體零售商,在一組貨品的15分鐘促銷時間內,往往準備著3套應變策略,以確保貨品能夠按計劃賣出。

在實體商業領域,有許多關于數據與營銷的案例。一個較早的版本就是美國沃爾瑪啤酒和尿布的數據關系。原來,美國的婦女在家照顧孩子,所以她們會囑咐丈夫在下班回家的路上為孩子買尿布,而丈夫在買尿布的同時又會順手購買自己愛喝的啤酒。

當分析師了解到啤酒和尿布銷量存在正相關關系、并進一步分析的時候,發現了這樣的購買情境,于是將這兩種屬于不同門類的商品擺在一起。這個發現為商家帶來了新的銷售組合。當然,即使再多的零售連鎖企業知道這個故事,也極少從平時銷售中能發現這樣的組合,哪怕是牽強附會的。

所以,零售策略設計是零售業“大數據”價值最大的地方,也是“大數據”可以直接為其提供支持的業務。

2、零售企業對“大數據”應保持正確態度

企業的領導者首先要重視“大數據”的發展、重視企業的數據中心,把收集顧客數據作為企業營銷運營的第一目標;第二,對企業內部人員進行培訓及建立收集數據的軟硬件機制;第三,以業務需求為準則,確定哪些數據是需要收集的;第四,確認在企業已有的數據基礎上或者未來方向前提下,如何達成前三項目標的基礎建設方案。

在這些IT基礎工作需要企業有實實在在的投入和建設規范的信息化團隊,作為中國商業最大的一分子——中小微型零售企業似乎是不可能也沒有足夠的能力來面對這樣一場變化的。

大中型零售商因為本身業務及利潤的積淀,已經能夠承擔這樣一場需求趨勢的需要成本。中小微型企業還處于快速發展過程中,如果也如同大中型企業進行全方面的投入,將很快會被新型的IT工具拖垮或者遭受重創。

但這并不意味著中小零售企業沒有機會,實際上IT的發展為所有的企業都提供了平等的選擇,云計算的廣泛應用即是對這樣一場變革帶來的臨時禮物。

作為中小微型零售企業,完全不必考慮自己建設一套“大數據”的IT系統,他們從精力、成本、能力上來說都不適合,因此此類企業可以將企業的IT建設外包給適合的服務商,企業本身的所有精力可以投入到對商圈的開發上。

目前,一些IT軟件開發運營商也已經針對傳統零售企業推出了云服務的基礎平臺,為中小微型商業企業提供了大型企業和超大型企業同樣的基礎環境及系統架構,小企業只需清晰地規劃出自己的目標和適合的步驟,使用云平臺按需付費即可,大可不必進行巨大的初始投入和不可預測的運行成本。

三、“大數據”在零售企業實戰中的應用

1、Target

最早關于“大數據”的故事發生在美國第二大的超市塔吉特百貨(Target)。孕婦對于零售商來說是個含金量很高的顧客群體。但是他們一般會去專門的孕婦商店而不是在Target購買孕期用品。人們一提起Target,往往想到的都是清潔用品、襪子和手紙之類的日常生活用品,卻忽視了Target有孕婦需要的一切。為此,Target的市場營銷人員求助于Target的顧客數據分析部要求建立一個模型,在孕婦第2個妊娠期就把她們給確認出來。在美國出生記錄是公開的,等孩子出生了,新生兒母親就會被鋪天蓋地的產品優惠廣告包圍,因此必須趕在孕婦第2個妊娠期行動起來。如果Target能夠趕在所有零售商之前知道哪位顧客懷孕了,市場營銷部門就可以早早的給他們發出量身定制的孕婦優惠廣告,早早圈定寶貴的顧客資源。

如何能夠準確地判斷哪位顧客懷孕? Target想到公司有一個迎嬰聚會(baby shower)的登記表,開始對這些登記表里的顧客的消費數據進行建模分析,不久就發現了許多非常有用的數據模式。比如模型發現,許多孕婦在第2個妊娠期的開始會買許多大包裝的無香味護手霜;在懷孕的最初20周大量購買補充鈣、鎂、鋅的善存片之類的保健品。最后Target選出了25種典型商品的消費數據構建了“懷孕預測指數”,通過這個指數,Target能夠在很小的誤差范圍內預測到顧客的懷孕情況,因此Target就能早早地把孕婦優惠廣告寄發給顧客。

為了不讓顧客覺得商家侵犯了自己的隱私,Target把孕婦用品的優惠廣告夾雜在其他一大堆與懷孕不相關的商品優惠廣告當中。

根據這個“大數據”模型,Target制訂了全新的廣告營銷方案,結果Target的孕期用品銷售呈現了爆炸性的增長。Target的“大數據”分析技術從孕婦這個細分顧客群開始向其他各種細分客戶群推廣,從Target使用“大數據”的2002年到2010年間,Target的銷售額從440億美元增長到了670億美元。

2、ZARA

ZARA平均每件服裝價格只有LVHM四分之一,但是,回看兩家公司的財務年報,ZARA稅前毛利率比LVHM集團還高23、6%。

(1)分析顧客的需求

在ZARA的門店里,柜臺和店內各角落都裝有攝影機,店經理隨身帶著PDA。目的是記錄其顧客的每個意見,如顧客對衣服圖案的偏好,扣子的大小,拉鏈的款式之類的微小舉動。店員會向分店經理匯報,經理上傳到ZARA內部全球資訊網絡中,每天至少兩次傳遞資訊給總部設計人員,由總部作出決策后立即傳送到生產線,改變產品樣式。

關店后,銷售人員結帳、盤點每天貨品上下架情況,并對客人購買與退貨率做出統計。再結合柜臺現金資料,交易系統做出當日成交分析報告,分析當日產品熱銷排名,然后,數據直達ZARA倉儲系統 。

收集海量的顧客意見,以此做出生產銷售決策,這樣的作法大大降低了存貨率。同時,根據這些電話和電腦數據,ZARA分析出相似的“區域流行”,在顏色、版型的生產中,做出最靠近客戶需求的市場區隔。

(2)結合線上店數據

2010年,ZARA同時在六個歐洲國家成立網絡商店,增加了網絡巨量資料的串連性。2011年,分別在美國、日本推出網絡平臺,除了增加營收,線上商店強化了雙向搜尋引擎、資料分析的功能。不僅回收意見給生產端,讓決策者精準找出目標市場;也對消費者提供更準確的時尚訊息,雙方都能享受“大數據”帶來的好處。分析師預估,網絡商店為ZARA至少提升了10%營收。

此外,線上商店除了交易行為,也是活動產品上市前的營銷試金石。ZARA通常先在網絡上舉辦消費者意見調查,再從網絡回饋中,擷取顧客意見,以此改善實際出貨的產品。

ZARA將網絡上的海量資料看作實體店面的前測指標。因為會在網絡上搜尋時尚資訊的人,對服飾的喜好、資訊的掌握,催生潮流的能力,比一般大眾更前衛。再者,會在網絡上搶先得知ZARA資訊的消費者,進實體店面消費的比率也很高。

這些顧客資料,除了應用在生產端,同時被整個ZARA所屬的英德斯(Inditex)集團各部門運用:包含客服中心、行銷部、設計團隊、生產線和通路等。根據這些巨量資料,形成各部門的KPI,完成ZARA內部的垂直整合主軸。

ZARA推行的海量資料整合,后來被ZARA所屬英德斯集團底下八個品牌學習應用??梢灶A見未來的時尚圈,除了臺面上的設計能力,臺面下的資訊/數據大戰,將是更重要的隱形戰場。

(3)對數據快速處理、修正、執行

H&M一直想跟上ZARA的腳步,積極利用“大數據”改善產品流程,成效卻不彰,兩者差距愈拉愈大,這是為什么?

主要的原因是,“大數據”最重要功能是縮短生產時間,讓生產端依照顧客意見,能于第一時間迅速修正。但是,H&M內部的管理流程,卻無法支撐“大數據”供應的龐大資訊。H&M的供應鏈中,從打版到出貨,需要三個月左右,完全不能與ZARA兩周的時間相比。

因為H&M不像ZARA,后者設計生產近半維持在西班牙國內,而H&M產地分散到亞洲、中南美洲各地。跨國溝通的時間,拉長了生產的時間成本。如此一來,“大數據”即使當天反映了各區顧客意見,無法立即改善,資訊和生產分離的結果,讓H&M內部的“大數據”系統功效受到限制。

“大數據”運營要成功的關鍵,是資訊系統要能與決策流程緊密結合,迅速對消費者的需求作出回應、修正,并且立刻執行決策。

3、亞馬遜

此前亞馬遜并未大張旗鼓推展廣告業務,直至2012年年底,有報道指出,亞馬遜即將推出實時廣告交易平臺,從而向Facebook和谷歌發起挑戰。這個實時廣告交易平臺又稱“需求方平臺”(Demand Side Platform,DSP),可以讓廣告與目標消費者相遇。廣告商可以在“需求方平臺”上競標網站的閑置廣告空間,而競標標的包括廣告版位,以及符合特定條件的消費者。

亞馬遜開發的“需求方平臺”可以“協助廣告商接觸網路上的眾多用戶,同時也幫助客戶迅速找到想購買產品的相關資訊”,“需求方平臺”概念雖非亞馬遜首創,但以豐富資料為后盾。

亞馬遜與廣告商分享的資訊有兩類,一是依用戶網路行為所做的通用分類,例如熱衷時尚、喜愛電子產品、身份為母親、愛喝咖啡等,二是用戶的商品搜尋記錄。至于消費者的實際購物資料,亞馬遜似乎尚未列入分享。廣告商即使無法得知實際消費記錄,能了解潛在顧客的商品搜尋記錄;亞馬遜如果全力進軍網路廣告市場,仍可能大大改變產業生態。

亞馬遜2012年的廣告收入約為5億美元, 2013年的廣告收入將達10億美元。這會成為亞馬遜未來幾年內營收增長的新動力,更重要的是,它可能是亞馬遜各項業務中利潤率最高的業務之一。

4、沃爾瑪

2011年,沃爾瑪電子商務的營收僅是亞馬遜的五分之一,且差距年年擴大,讓沃爾瑪不得不設法奮起直追,找出各種提升數字營收的模式。最終,沃爾瑪選擇在社交網站的移動商務上放手一搏,讓更大量、迅速的資訊,進入沃爾瑪內部銷售決策。沃爾瑪的每張購買建議清單,都是大量資料運算而出的結果。

2011年4月,沃爾瑪以3億美元高價收購了一家專長分類社群網站Kosmix。Kosmix不僅能收集、分析網絡上的海量資料(大數據)給企業,還能將這些資訊個人化,提供采購建議給終端消費者(若不是追蹤結帳資料,這些細微的消費者習慣,很難從賣場巡邏中發現)。這意味著,沃爾瑪使用的“大數據”模式,已經從“挖掘”顧客需求進展到要能夠“創造”消費需求。

轉自:品途網

更多精彩內容,請關注人人都是產品經理微信公眾號或下載App
評論
評論請登錄
  1. 目前還沒評論,等你發揮!