AI“幻覺”的類型、原因與應對方法(3/3)——如何應對AI“幻覺”

2 評論 2762 瀏覽 2 收藏 5 分鐘

在前面的文章中,我們已經分享了AI幻覺的類型,以及產生幻覺的原因,這篇文章,我們來說一下應對方法:如何解決AI幻覺的問題。

在了解了AI“幻覺”產生的原因后,我們需要對其進行有效的應對,以確保AI能夠有效地“為我們所用”。

首先,AI的研發團隊是會持續地改善AI的“幻覺”問題。其次,我們作為使用者,也是有一些手段和技巧來盡量避免AI產生“幻覺”問題的。

對于AI研發團隊來說:

  • 迭代優化模型:研發團隊會通過持續的模型迭代和優化,來改善AI的理解和推理能力,減少AI“幻覺”。
  • 模型解釋性:研發團隊可以使用模型解釋工具來解釋模型的預測結果,從而理解模型為何會產生“幻覺”,并據此優化模型。
  • 更豐富的訓練數據:研發團隊可以提供更多豐富且平衡的訓練數據,讓模型有更多元的視角和理解,以減少過度推斷或假設。
  • 用戶反饋:研發團隊會通過收集用戶反饋,獲取模型“幻覺”現象的實際案例,并根據這些反饋進行模型優化。
  • 使用RAG控制內容:相對于上面都是細水長流的幾項手段,引入“RAG”可以取得立竿見影的效果。RAG(Retrieval Augmented Generation),即檢索增強生成,是指對大模型輸出進行優化,使其能夠在生成答案之前,引用訓練數據來源之外的權威知識庫。RAG的作用類似為大模型配備搜索引擎,相當于讓大模型在“開卷”而不是“閉卷”環境中做出反應。

對于AI使用者來說:

  • 提升個人判斷力:不論是閱讀AI的回答還是處理其他信息,不盲目接收信息,保持批判性思維,提升自我判斷力并永遠是第一位的。
  • 理解AI的局限性:了解AI當前的技術發展程度和存在的問題,不完全依賴它作為唯一信息來源,特別是在關鍵的決策當中。
  • 優化問題提問方式:通過使用更加明確和具體的提問方式,以減少AI的過度推斷和假設。對問題進行細化,盡量避免讓AI進行過多的揣測。(這里展開來講就涉及到Prompt的編寫問題了,我們就留到另外的文章來解答吧。)
  • 重復或重新提問:如果對AI的回答有疑問或不滿意,可以試著以不同的角度或方式,進行重復或重新提問。如果每次得到的答案都一致,那么AI的答案可能更可信。
  • 索取支持信息:在向AI尋求答案時,可以要求AI提供答案的來源,這樣我們可以驗證答案的準確性。

總的來說,AI不是無所不能的,它有自己的局限性,AI“幻覺”是一個無法避免的存在。但只要我們持續學習,掌握科學使用AI的方式方法,AI就能夠更好地為我們工作,成為我們的左膀右臂。

結語

到這里,我們已經完整介紹了AI“幻覺”的類型、成因與應對方法了。接下來還有一份“番外篇”,我將針對國內的主流AI大模型,進行一輪“幻覺”橫向對比個人測評。那么,到底哪家產品表現最佳,我們下一篇文章來揭曉。

討論話題:你有哪些對應AI“幻覺”的妙招?評論區里也分享一下吧。

注:由于本文預設讀者是AI零基礎人群,期望達到啟發作用。因此筆者會嘗試用盡量淺顯的語言來介紹,而在簡化某個概念、原理的過程中,可能會丟失其完整性。這一點還請讀者注意。

作者:產品經理崇生,公眾號:崇生的黑板報

本文由 @產品經理崇生 原創發布于人人都是產品經理。未經作者許可,禁止轉載

題圖來自 unsplash,基于CC0協議

該文觀點僅代表作者本人,人人都是產品經理平臺僅提供信息存儲空間服務。

更多精彩內容,請關注人人都是產品經理微信公眾號或下載App
評論
評論請登錄
  1. 本系列第二篇《AI“幻覺”的類型、原因與應對方法(2/3)——為什么會產生AI“幻覺”》回顧
    http://www.aharts.cn/share/6073096.html

    來自廣東 回復
  2. 本系列第一篇《AI“幻覺”的類型、原因與應對方法(1/3)——什么是AI“幻覺”》回顧
    http://www.aharts.cn/share/6073002.html

    來自廣東 回復