AI 模型戰(zhàn)局漸定,下一波紅利在哪?
隨著生成式AI市場(chǎng)基礎(chǔ)層的穩(wěn)定,競(jìng)爭(zhēng)重心轉(zhuǎn)向了推理層的開(kāi)發(fā),AI的系統(tǒng)2思維被提升至新的高度,預(yù)示著AI在解決問(wèn)題和深層次推理方面的能力將得到顯著增強(qiáng)。
生成式 AI 市場(chǎng)的基礎(chǔ)層正逐漸穩(wěn)定,形成了由幾個(gè)主要參與者和聯(lián)盟組成的均衡格局,包括微軟/OpenAI、AWS/Anthropic、Meta 以及谷歌/DeepMind。只有那些擁有強(qiáng)大經(jīng)濟(jì)引擎和大量資本的規(guī)模化參與者才能繼續(xù)參與競(jìng)爭(zhēng)。
雖然這場(chǎng)戰(zhàn)斗遠(yuǎn)未結(jié)束(而且在博弈論的驅(qū)動(dòng)下不斷升級(jí)),但市場(chǎng)結(jié)構(gòu)本身正在 solidifying,很明顯,我們將擁有越來(lái)越便宜和充足的下一個(gè)詞預(yù)測(cè)(next-token predictions)能力。
隨著大語(yǔ)言模型(LLM)市場(chǎng)結(jié)構(gòu)的穩(wěn)定,新的前沿正在出現(xiàn)。焦點(diǎn)正在轉(zhuǎn)移到推理層(reasoning layer)的開(kāi)發(fā)和擴(kuò)展上,這里”系統(tǒng) 2″(System 2)思維占據(jù)主導(dǎo)地位。
受 AlphaGo 等模型的啟發(fā),這一層旨在賦予 AI 系統(tǒng)以 deliberate 推理、解決問(wèn)題的能力,以及在推理時(shí)進(jìn)行超越快速模式匹配的認(rèn)知操作。同時(shí),新的認(rèn)知架構(gòu)和用戶(hù)界面正在塑造這些推理能力如何傳遞給用戶(hù)并與之互動(dòng)。
這對(duì) AI 市場(chǎng)的創(chuàng)始人意味著什么?對(duì)現(xiàn)有軟件公司又意味著什么?作為投資者,我們認(rèn)為生成式 AI 技術(shù)棧中哪一層最有前景?
在我們最新關(guān)于生成式 AI 市場(chǎng)狀況的文章中,我們將探討基礎(chǔ) LLM 層的 consolidation 如何為這些高階推理和 agentic 能力的擴(kuò)展競(jìng)賽鋪平了道路,并討論一代具有新型認(rèn)知架構(gòu)和用戶(hù)界面的”killer apps”。
草莓
2024 年最重要的模型更新當(dāng)屬 OpenAI 的 o1,之前被稱(chēng)為 Q*,也被稱(chēng)為 Strawberry。
這不僅重申了 OpenAI 在模型質(zhì)量排行榜上的領(lǐng)先地位,還對(duì)現(xiàn)有架構(gòu)進(jìn)行了顯著改進(jìn)。更具體地說(shuō),這是第一個(gè)具有真正通用推理能力的模型,他們通過(guò)推理時(shí)計(jì)算(inference-time compute)實(shí)現(xiàn)了這一突破。
這意味著什么?預(yù)訓(xùn)練模型是在海量數(shù)據(jù)上進(jìn)行下一個(gè)詞的預(yù)測(cè),它們依賴(lài)于”訓(xùn)練時(shí)計(jì)算”(training-time compute)。
基本推理能力是規(guī)?;囊粋€(gè) emergent 特性,但這種推理能力非常有限。如果我們能夠直接教會(huì)模型進(jìn)行更深入的推理呢?這基本上就是 Strawberry 所實(shí)現(xiàn)的。
當(dāng)我們說(shuō)”推理時(shí)計(jì)算”時(shí),我們指的是要求模型在給出回應(yīng)前先停下來(lái)思考,這需要在推理階段進(jìn)行更多的計(jì)算(因此稱(chēng)為”推理時(shí)計(jì)算”)。”停下來(lái)思考”的部分就是推理。
AlphaGo
讓我們先回顧一下 2016 年 3 月在首爾發(fā)生的事情。深度學(xué)習(xí)歷史上最具里程碑意義的時(shí)刻之一就發(fā)生在這里:AlphaGo 與傳奇圍棋大師李世石的對(duì)決。這不僅僅是一場(chǎng) AI 對(duì)人類(lèi)的比賽,它標(biāo)志著世界見(jiàn)證了 AI 不再僅僅是模仿模式,而是在真正地”思考”。
是什么讓 AlphaGo 與之前的游戲 AI 系統(tǒng)(如深藍(lán))不同呢?與大語(yǔ)言模型(LLMs)類(lèi)似,AlphaGo 首先通過(guò)約 3000 萬(wàn)次歷史棋局和自我對(duì)弈來(lái)預(yù)訓(xùn)練,模仿人類(lèi)專(zhuān)家的行為。
但與直接從預(yù)訓(xùn)練模型中給出本能反應(yīng)不同,AlphaGo 會(huì)花時(shí)間停下來(lái)思考。在推理階段,模型會(huì)對(duì)大量潛在的未來(lái)場(chǎng)景進(jìn)行搜索或模擬,對(duì)這些場(chǎng)景進(jìn)行評(píng)分,然后選擇期望值最高的場(chǎng)景(或答案)作為回應(yīng)。
給予 AlphaGo 的思考時(shí)間越多,它的表現(xiàn)就越好。如果沒(méi)有推理時(shí)計(jì)算,該模型無(wú)法擊敗頂級(jí)人類(lèi)選手。但隨著推理時(shí)間的增加,AlphaGo 的水平不斷提升,最終超越了最優(yōu)秀的人類(lèi)棋手。
讓我們回到 LLM 的世界。在這里復(fù)制 AlphaGo 的難點(diǎn)在于構(gòu)建價(jià)值函數(shù),即用于評(píng)分回應(yīng)的函數(shù)。如果你在下圍棋,這相對(duì)簡(jiǎn)單:你可以模擬整個(gè)游戲過(guò)程直到結(jié)束,看誰(shuí)贏了,然后計(jì)算下一步棋的期望值。
如果是編程,也相對(duì)直接:你可以測(cè)試代碼看它是否有效。但如何評(píng)分一篇文章的初稿呢?或者一份旅行計(jì)劃?亦或一份長(zhǎng)篇文檔的關(guān)鍵詞總結(jié)?
這就是當(dāng)前方法在推理上的難點(diǎn)所在,也是為什么 Strawberry 在邏輯相關(guān)領(lǐng)域(如編程、數(shù)學(xué)、科學(xué))表現(xiàn)相對(duì)較強(qiáng),而在更開(kāi)放和非結(jié)構(gòu)化的領(lǐng)域(如寫(xiě)作)表現(xiàn)不那么突出的原因。
雖然 Strawberry 的具體實(shí)現(xiàn)是嚴(yán)格保密的,但其關(guān)鍵理念涉及對(duì)模型生成的思維鏈進(jìn)行強(qiáng)化學(xué)習(xí)。對(duì)模型思維鏈的審核表明,正在發(fā)生一些根本性的、令人興奮的事情,這實(shí)際上類(lèi)似于人類(lèi)的思考和推理方式。
例如,o1 顯示出了當(dāng)遇到困難時(shí)能夠回溯的能力,這是擴(kuò)展推理時(shí)間的一個(gè) emergent 特性。它還表現(xiàn)出能夠像人類(lèi)那樣思考問(wèn)題(例如,通過(guò)可視化球體上的點(diǎn)來(lái)解決幾何問(wèn)題),以及用新方式思考問(wèn)題的能力(例如,以人類(lèi)不會(huì)想到的方式解決編程競(jìng)賽中的問(wèn)題)。
推動(dòng)推理時(shí)計(jì)算前進(jìn)的新想法層出不窮(例如,計(jì)算獎(jiǎng)勵(lì)函數(shù)的新方法,縮小生成器/驗(yàn)證器差距的新方法),研究團(tuán)隊(duì)正在努力改進(jìn)模型的推理能力。換句話說(shuō),深度強(qiáng)化學(xué)習(xí)再次變得炙手可熱,它正在實(shí)現(xiàn)一個(gè)全新的推理層。
快與慢的思考(系統(tǒng)1 vs 系統(tǒng)2)
從預(yù)訓(xùn)練的本能反應(yīng)(”系統(tǒng) 1″)到更深層次的 deliberate 推理(”系統(tǒng) 2″)的飛躍是 AI 的下一個(gè)前沿。模型僅僅擁有知識(shí)是不夠的,它們需要能夠暫停、評(píng)估并實(shí)時(shí)推理決策。
我們可以將預(yù)訓(xùn)練視為系統(tǒng) 1 層。無(wú)論模型是在圍棋中預(yù)訓(xùn)練了數(shù)百萬(wàn)步棋(AlphaGo),還是在互聯(lián)網(wǎng)規(guī)模的文本上預(yù)訓(xùn)練了數(shù) PB 的數(shù)據(jù)(LLMs),其任務(wù)都是模仿模式——無(wú)論是人類(lèi)的下棋方式還是語(yǔ)言。
但模仿,盡管強(qiáng)大,卻不是真正的推理。它無(wú)法正確地思考復(fù)雜的新情況,尤其是那些超出樣本的情況。
這就是系統(tǒng) 2 思維發(fā)揮作用的地方,也是最新一波 AI 研究的重點(diǎn)。當(dāng)一個(gè)模型”停下來(lái)思考”時(shí),它不僅僅是生成學(xué)習(xí)到的模式或基于過(guò)去數(shù)據(jù)吐出預(yù)測(cè)。
它在生成一系列可能性,考慮潛在結(jié)果,并基于推理做出決策。
對(duì)于許多任務(wù)來(lái)說(shuō),系統(tǒng) 1 已經(jīng)足夠了。正如 Noam Brown 在我們最新一期《Training Data》節(jié)目中指出的,花更長(zhǎng)時(shí)間思考不丹的首都是什么并不會(huì)有幫助——你要么知道,要么不知道。這種情況下,快速的基于模式的回憶就很有效。
但當(dāng)我們面對(duì)更復(fù)雜的問(wèn)題時(shí)——比如數(shù)學(xué)或生物學(xué)的突破性進(jìn)展——快速、本能的反應(yīng)就不夠了。這些進(jìn)步需要深入思考、創(chuàng)造性的問(wèn)題解決能力,最重要的是,需要時(shí)間。
AI 也是如此。要解決最具挑戰(zhàn)性、最有意義的問(wèn)題,AI 需要超越快速的 in-sample 反應(yīng),花時(shí)間進(jìn)行那種定義人類(lèi)進(jìn)步的 thoughtful 推理。
新 Scaling Law,新軍備競(jìng)賽
o1 論文中最重要的洞見(jiàn)是出現(xiàn)了一個(gè)新的擴(kuò)展定律(scaling law)。
預(yù)訓(xùn)練大語(yǔ)言模型(LLMs)遵循一個(gè)眾所周知的擴(kuò)展定律:在預(yù)訓(xùn)練模型上投入的計(jì)算和數(shù)據(jù)越多,模型的表現(xiàn)就越好。
o1 論文開(kāi)辟了一個(gè)全新的計(jì)算擴(kuò)展維度:給模型提供的推理時(shí)間(或”測(cè)試時(shí)間”)計(jì)算越多,它的推理能力就越強(qiáng)。
來(lái)源:OpenAI o1 技術(shù)報(bào)告
如果模型能夠思考數(shù)小時(shí)、數(shù)天,甚至數(shù)十年會(huì)發(fā)生什么?我們能解決黎曼猜想嗎?我們能回答阿西莫夫的最后一個(gè)問(wèn)題嗎?
這種轉(zhuǎn)變將使我們從 massive 預(yù)訓(xùn)練集群的世界轉(zhuǎn)向推理云(inference clouds)——一種能根據(jù)任務(wù)復(fù)雜度動(dòng)態(tài)擴(kuò)展計(jì)算能力的環(huán)境。
贏家,會(huì)通吃嗎?
隨著 OpenAI、Anthropic、谷歌和 Meta 擴(kuò)展它們的推理層并開(kāi)發(fā)越來(lái)越強(qiáng)大的推理機(jī)器,會(huì)發(fā)生什么?我們會(huì)有一個(gè)主宰一切的模型嗎?
生成式 AI 市場(chǎng)初期有一種假設(shè),認(rèn)為單一的模型公司會(huì)變得如此強(qiáng)大和全面,以至于會(huì)吞并所有其他應(yīng)用。到目前為止,這個(gè)預(yù)測(cè)在兩個(gè)方面是錯(cuò)誤的。
首先,在模型層面存在充分的競(jìng)爭(zhēng),各家公司不斷地在最先進(jìn)(SOTA)能力上你追我趕。雖然有可能某家公司通過(guò)廣泛領(lǐng)域的自我對(duì)弈實(shí)現(xiàn) continuous 自我改進(jìn)并取得突破性進(jìn)展,但目前我們還沒(méi)有看到這方面的證據(jù)。
恰恰相反,模型層面的競(jìng)爭(zhēng)異常激烈,自上次開(kāi)發(fā)者日以來(lái),GPT-4 的每 token 價(jià)格已經(jīng)下降了 98%。
其次,除了 ChatGPT 這個(gè)顯著的例外,模型基本上沒(méi)有成功進(jìn)入應(yīng)用層成為爆款產(chǎn)品。現(xiàn)實(shí)世界是混亂的。
優(yōu)秀的研究人員并不想去了解每個(gè)可能的 vertical 中每個(gè)可能功能的細(xì)節(jié)和端到端工作流程。對(duì)他們來(lái)說(shuō),只做到 API 層面既有吸引力又符合經(jīng)濟(jì)理性,讓開(kāi)發(fā)者社區(qū)去處理現(xiàn)實(shí)世界的混亂。這對(duì)應(yīng)用層來(lái)說(shuō)是個(gè)好消息。
真實(shí)世界,很復(fù)雜
作為一名科學(xué)家,你計(jì)劃和執(zhí)行行動(dòng)以達(dá)成目標(biāo)的方式與作為一名軟件工程師的工作方式有很大不同。更進(jìn)一步說(shuō),即使是在不同公司工作的軟件工程師,其工作方式也會(huì)有所不同。
隨著研究實(shí)驗(yàn)室不斷推進(jìn) horizontal 通用推理的邊界,我們?nèi)匀恍枰囟ㄓ趹?yīng)用或領(lǐng)域的推理來(lái)提供有用的 AI 代理?;靵y的現(xiàn)實(shí)世界需要大量特定于領(lǐng)域和應(yīng)用的推理,這些推理無(wú)法有效地編碼到通用模型中。
這就引出了認(rèn)知架構(gòu)(cognitive architectures)的概念,即你的系統(tǒng)如何思考:接收用戶(hù)輸入并執(zhí)行 action 或生成響應(yīng)的代碼流和模型交互流程。
以 Factory 為例,他們的每個(gè)”機(jī)器人”(droid)產(chǎn)品都有一個(gè) custom 認(rèn)知架構(gòu),模仿人類(lèi)解決特定任務(wù)的思維方式,比如審查 pull requests 或編寫(xiě)并執(zhí)行將服務(wù)從一個(gè)后端遷移到另一個(gè)后端的遷移計(jì)劃。
Factory 的機(jī)器人會(huì)分解所有依賴(lài)關(guān)系,提出相關(guān)的代碼變更,添加單元測(cè)試,并讓人類(lèi)參與審查。然后在獲得批準(zhǔn)后,在開(kāi)發(fā)環(huán)境中運(yùn)行所有文件的變更,如果所有測(cè)試都通過(guò),就合并代碼。
這就像人類(lèi)可能的操作方式一樣——通過(guò)一系列離散任務(wù)而不是一個(gè)泛化的黑箱答案來(lái)完成。
應(yīng)用層創(chuàng)業(yè),不 low
想象一下你想在 AI 領(lǐng)域創(chuàng)業(yè)。你會(huì)選擇技術(shù)棧的哪一層?你想在基礎(chǔ)設(shè)施層面競(jìng)爭(zhēng)嗎?祝你好運(yùn)打敗英偉達(dá)和 hyperscalers。
你想在模型層面競(jìng)爭(zhēng)嗎?祝你好運(yùn)打敗 OpenAI 和馬克·扎克伯格。
你想在應(yīng)用層面競(jìng)爭(zhēng)嗎?祝你好運(yùn)打敗企業(yè) IT 部門(mén)和全球系統(tǒng)集成商。哦,等等。這最后一個(gè)聽(tīng)起來(lái)實(shí)際上是可行的!
基礎(chǔ)模型(foundation models)很神奇,但也很混亂。主流企業(yè)無(wú)法應(yīng)對(duì)黑箱、幻覺(jué)(hallucinations)和笨拙的工作流程。消費(fèi)者面對(duì)空白提示不知道該問(wèn)什么。這些都是應(yīng)用層的機(jī)會(huì)。
兩年前,許多應(yīng)用層公司被嘲笑為”僅僅是 GPT-3 的包裝”。如今,這些”包裝”卻成為了構(gòu)建持久價(jià)值的少數(shù)可靠方法之一。最初的”包裝”已經(jīng)演變成了”認(rèn)知架構(gòu)”。
應(yīng)用層 AI 公司不僅僅是基礎(chǔ)模型之上的用戶(hù)界面。遠(yuǎn)非如此。
它們擁有復(fù)雜的認(rèn)知架構(gòu),通常包括多個(gè)基礎(chǔ)模型,上面有某種路由機(jī)制,用于 RAG(檢索增強(qiáng)生成)的向量和/或圖數(shù)據(jù)庫(kù),確保合規(guī)性的 guardrails,以及模仿人類(lèi)思考工作流程推理方式的應(yīng)用邏輯。
AI 的 SaaS
AI 轉(zhuǎn)型正在將”軟件即服務(wù)”(software-as-a-service)轉(zhuǎn)變?yōu)?#8221;服務(wù)即軟件”(service-as-software)。軟件公司正在將人力勞動(dòng)轉(zhuǎn)化為軟件。這意味著可尋址市場(chǎng)不僅僅是軟件市場(chǎng),而是以萬(wàn)億美元計(jì)的服務(wù)市場(chǎng)。這種轉(zhuǎn)變歸功于 agentic 推理能力的發(fā)展。
“銷(xiāo)售工作”是什么意思?Sierra 是一個(gè)很好的例子。B2C 公司將 Sierra 放在他們的網(wǎng)站上與客戶(hù)交流。其工作目標(biāo)是解決客戶(hù)問(wèn)題。
Sierra 按解決問(wèn)題的次數(shù)獲得報(bào)酬。這里沒(méi)有”席位”的概念。你有一項(xiàng)工作需要完成,Sierra 來(lái)完成它,然后按照完成情況獲得相應(yīng)的報(bào)酬。
這是許多 AI 公司的 true north(指導(dǎo)方向)。Sierra 的優(yōu)勢(shì)在于具有優(yōu)雅的失敗模式(可以升級(jí)到人工代理)。并非所有公司都如此幸運(yùn)。
一種新興的模式是首先作為副駕駛(copilot)部署(human-in-the-loop),然后利用這些經(jīng)驗(yàn)贏得作為自動(dòng)駕駛(autopilot)部署的機(jī)會(huì)(無(wú)人參與)。GitHub Copilot 就是一個(gè)很好的例子。
新一代的 Agent
隨著生成式 AI 的推理能力逐步成熟,一類(lèi)新的 agentic 應(yīng)用正在涌現(xiàn)。
這些應(yīng)用層公司呈現(xiàn)出什么樣的形態(tài)?有趣的是,這些公司與它們的云計(jì)算前輩看起來(lái)不太一樣:
云計(jì)算公司瞄準(zhǔn)軟件利潤(rùn)池。AI 公司瞄準(zhǔn)服務(wù)利潤(rùn)池。
云計(jì)算公司銷(xiāo)售軟件(按席位收費(fèi))。AI 公司銷(xiāo)售工作(按結(jié)果收費(fèi))。
云計(jì)算公司喜歡自下而上發(fā)展,采用無(wú)摩擦分發(fā)模式。AI 公司越來(lái)越多地采用自上而下的方式,使用高接觸、高信任的交付模式。
我們看到一批新的 agentic 應(yīng)用正在知識(shí)經(jīng)濟(jì)的各個(gè)領(lǐng)域涌現(xiàn)。以下是一些例子:
- Harvey:AI 律師
- Glean:AI 工作助手
- Factory:AI 軟件工程師
- Abridge:AI 醫(yī)療記錄員
- XBOW:AI 滲透測(cè)試員
- Sierra:AI 客戶(hù)支持代理
通過(guò)降低這些服務(wù)的邊際成本——與不斷下降的推理成本保持一致——這些 agentic 應(yīng)用正在擴(kuò)大和創(chuàng)造新的市場(chǎng)。
以 XBOW 為例。XBOW 正在構(gòu)建一個(gè) AI”滲透測(cè)試員”。”滲透測(cè)試”是對(duì)計(jì)算機(jī)系統(tǒng)進(jìn)行的模擬網(wǎng)絡(luò)攻擊,公司進(jìn)行這種測(cè)試是為了評(píng)估自己的安全系統(tǒng)。
在生成式 AI 出現(xiàn)之前,公司只在有限的情況下(例如合規(guī)要求)才雇傭滲透測(cè)試員,因?yàn)槿斯B透測(cè)試成本高昂:這是一項(xiàng)由高技能人員執(zhí)行的手動(dòng)任務(wù)。
然而,XBOW 現(xiàn)在正在展示基于最新推理 LLMs 構(gòu)建的自動(dòng)化滲透測(cè)試,其性能可以媲美最高技能的人類(lèi)滲透測(cè)試員。這擴(kuò)大了滲透測(cè)試市場(chǎng),為各種規(guī)模的公司開(kāi)啟了 continuous 滲透測(cè)試的可能性。
SaaS 生態(tài),將面臨什么?
今年早些時(shí)候,我們會(huì)見(jiàn)了有限合伙人。他們最關(guān)心的問(wèn)題是”AI 轉(zhuǎn)型會(huì)摧毀你現(xiàn)有的云計(jì)算公司嗎?”
我們最初的默認(rèn)答案是”不會(huì)”。初創(chuàng)公司和現(xiàn)有公司之間的經(jīng)典戰(zhàn)斗是一場(chǎng)馬拉松:初創(chuàng)公司構(gòu)建分銷(xiāo)渠道,現(xiàn)有公司改進(jìn)產(chǎn)品。
擁有酷炫產(chǎn)品的年輕公司能否在擁有客戶(hù)資源的現(xiàn)有公司開(kāi)發(fā)出酷炫產(chǎn)品之前獲得大量客戶(hù)?鑒于 AI 的大部分魔力來(lái)自基礎(chǔ)模型,我們的默認(rèn)假設(shè)是不會(huì)——現(xiàn)有公司會(huì)表現(xiàn)得很好,因?yàn)檫@些基礎(chǔ)模型對(duì)它們和初創(chuàng)公司同樣 accessible,而且它們還有數(shù)據(jù)和分銷(xiāo)的先發(fā)優(yōu)勢(shì)。
初創(chuàng)公司的主要機(jī)會(huì)不是取代現(xiàn)有軟件公司,而是瞄準(zhǔn)可自動(dòng)化的工作池。
但現(xiàn)在我們不那么確定了?;仡櫱懊骊P(guān)于認(rèn)知架構(gòu)的討論。將模型的原始能力轉(zhuǎn)化為引人注目、可靠的端到端業(yè)務(wù)解決方案需要大量的工程工作。如果我們只是大大低估了”AI 原生”的意義呢?
20 年前,本地部署軟件公司嘲笑 SaaS 的 idea。”有什么大不了的?我們也可以運(yùn)行自己的服務(wù)器,通過(guò)互聯(lián)網(wǎng)提供這些服務(wù)!”從概念上說(shuō),這確實(shí)很簡(jiǎn)單。但隨之而來(lái)的是整個(gè)業(yè)務(wù)的徹底重塑。工程、產(chǎn)品和設(shè)計(jì)(EPD)從瀑布式開(kāi)發(fā)和 PRD 轉(zhuǎn)向了敏捷開(kāi)發(fā)和 AB 測(cè)試。
Go-to-Market(GTM)從自上而下的企業(yè)銷(xiāo)售和商務(wù)晚宴轉(zhuǎn)向了自下而上的產(chǎn)品主導(dǎo)增長(zhǎng)(PLG)和產(chǎn)品分析。商業(yè)模式從高單價(jià)(ASP)和維護(hù)收入流轉(zhuǎn)向了高凈留存收入(NDR)和基于使用的定價(jià)。很少有本地部署公司成功完成了這種轉(zhuǎn)型。
如果 AI 是一個(gè)類(lèi)似的轉(zhuǎn)變呢?AI 的機(jī)會(huì)會(huì)不會(huì)既是銷(xiāo)售工作又是替代軟件?
通過(guò) Day.ai,我們看到了未來(lái)的一瞥。Day 是一個(gè) AI 原生的客戶(hù)關(guān)系管理(CRM)系統(tǒng)。系統(tǒng)集成商通過(guò)配置 Salesforce 以滿足你的需求賺取數(shù)十億美元。
而 Day 只需要訪問(wèn)你的郵件和日歷,以及回答一頁(yè)問(wèn)卷的答案,就能自動(dòng)生成一個(gè)完全 tailored 到你業(yè)務(wù)的 CRM。它可能還沒(méi)有所有的花里胡哨的功能,但自動(dòng)生成的 CRM 無(wú)需人工輸入就能保持更新的魔力已經(jīng)讓人們開(kāi)始轉(zhuǎn)向使用它了。
投資者怎么看
作為投資者,我們將注意力集中在哪里?資金正在如何部署?以下是我們的簡(jiǎn)要看法:
基礎(chǔ)設(shè)施
這是 hyperscalers 的領(lǐng)域。它由博弈論行為驅(qū)動(dòng),而非微觀經(jīng)濟(jì)學(xué)。對(duì)風(fēng)險(xiǎn)投資家來(lái)說(shuō)是個(gè)糟糕的選擇。
模型
這是 hyperscalers 和金融投資者的領(lǐng)域。Hyperscalers 正在用資產(chǎn)負(fù)債表?yè)Q取利潤(rùn)表,投入的資金最終會(huì)以計(jì)算收入的形式回流到他們的云業(yè)務(wù)。金融投資者則受到”被科學(xué)震撼”偏見(jiàn)的影響。這些模型非常酷,這些團(tuán)隊(duì)令人印象深刻。管他的微觀經(jīng)濟(jì)學(xué)!
開(kāi)發(fā)者工具和基礎(chǔ)設(shè)施軟件
對(duì)戰(zhàn)略投資者來(lái)說(shuō)不太有趣,對(duì)風(fēng)險(xiǎn)投資家來(lái)說(shuō)更有吸引力。在云轉(zhuǎn)型期間,這一層面創(chuàng)造了約 15 家營(yíng)收超過(guò) 10 億美元的公司,我們預(yù)計(jì) AI 領(lǐng)域也會(huì)出現(xiàn)類(lèi)似情況。
應(yīng)用
對(duì)風(fēng)險(xiǎn)投資最有吸引力的層面。在云轉(zhuǎn)型期間,應(yīng)用層面創(chuàng)造了約 20 家營(yíng)收超過(guò) 10 億美元的公司,移動(dòng)轉(zhuǎn)型期間又創(chuàng)造了約 20 家,我們預(yù)計(jì) AI 領(lǐng)域也會(huì)如此。
綜上
在生成式 AI 的下一階段,我們預(yù)計(jì)推理研發(fā)的影響將波及應(yīng)用層。這些波瀾既快速又深遠(yuǎn)。迄今為止,大多數(shù)認(rèn)知架構(gòu)都采用了巧妙的”去除限制”(unhobbling)技術(shù);
現(xiàn)在,隨著這些能力被深入地烘焙到模型本身中,我們預(yù)計(jì) agentic 應(yīng)用將迅速變得更加復(fù)雜和 robust。
回到研究實(shí)驗(yàn)室,推理和推理時(shí)計(jì)算在可預(yù)見(jiàn)的未來(lái)將繼續(xù)成為一個(gè)強(qiáng)烈的主題。既然我們有了新的擴(kuò)展定律,下一輪競(jìng)賽已經(jīng)開(kāi)始。
但對(duì)于任何特定領(lǐng)域,收集現(xiàn)實(shí)世界的數(shù)據(jù)并編碼特定于領(lǐng)域和應(yīng)用的認(rèn)知架構(gòu)仍然很困難。這再次是最后一公里應(yīng)用提供者在解決混亂現(xiàn)實(shí)世界中 diverse 問(wèn)題集時(shí)可能占有優(yōu)勢(shì)的地方。
展望未來(lái),像 Factory 的機(jī)器人這樣的多代理系統(tǒng)可能會(huì)開(kāi)始 proliferate,作為對(duì)推理和社會(huì)學(xué)習(xí)過(guò)程建模的方式。一旦我們能夠完成工作,我們就可以讓工人團(tuán)隊(duì)完成更多的任務(wù)。
我們所有人都在熱切期待生成式 AI 的”第 37 手”,就像 AlphaGo 在對(duì)李世石的第二局比賽中那樣——一個(gè)通用 AI 系統(tǒng)以某種超人的方式讓我們驚訝,讓我們感覺(jué)到獨(dú)立思考。
這并不意味著 AI”醒來(lái)”了(AlphaGo 并沒(méi)有),而是我們模擬了感知、推理和行動(dòng)的過(guò)程,AI 可以以真正新穎和有用的方式探索這些過(guò)程。這實(shí)際上可能就是 AGI(通用人工智能),如果是這樣,它將不會(huì)是一個(gè)單一的事件,而僅僅是技術(shù)的下一個(gè)階段。
本文由人人都是產(chǎn)品經(jīng)理作者【賽博禪心】,微信公眾號(hào):【賽博禪心】,原創(chuàng)/授權(quán) 發(fā)布于人人都是產(chǎn)品經(jīng)理,未經(jīng)許可,禁止轉(zhuǎn)載。
題圖來(lái)自Unsplash,基于 CC0 協(xié)議。
- 目前還沒(méi)評(píng)論,等你發(fā)揮!